
SF 298 MASTER COPY KEEP THfS COPY FOR REPRODUCTION PURPOSES 

REPORT DOCUMENTATION PAGE 
Form Approved 
OMB NO. 07044188 

Public reporting burden for this collection of information * estimated to average 1 hour per response, including the time for reviewing «utructtoni, searching existing data sources, 
gathering and maintaining the data needed, and compleung and reviewing the collection of information. Send comment regarding «is burden estsnates or any other aspect of this 
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports. 1215 Jefferson 
Davis Highway. Suite 1204, Arlington. VA 22202-4302. and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington. DC 20503.  

1. AGENCY USE ONLY (Leave blank) REPORT DATE 
12/28/97 

3. REPORT TYPE AND DATES COVERED 
Final  Report October 1994-September 1997 

TITLE AND SUBTITLE 
Quantum Mechanical Balance Equation Approach to 
Semiconductor Device Modeling 

6. AUTHOR(S) 

Hong-Liang Cui 

5. FUNDING NUMBERS 

DAAH04-94-G-0413 

7.1PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(ES) 

Stevens Institute of Technology 
Hoboken, New Jersey . 07030 

8. PERFORMING ORGANIZATION 
REPORT NUMBER 

9.    SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 

U.S. Army Research Office 
P.O. Box 12211 
Research Triangle Park, NC 27709-2211 

10. SPONSORING / MONITORING 
AGENCY REPORT NUMBER 

f\fL0lZ*St''1*l~ 

11. SUPPLEMENTARY NOTES 

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as 
an official Department of the Army position, policy or decision, unless so designated by other documentation. 

12a. DISTRIBUTION / AVAILABILITY STATEMENT 

Approved for public release; distribution unlimited. 

12 b. DISTRIBUTION CODE 

13. ABSTRACT (Maximum 200 words) 

This research project was focused on the development of a quantum mechanical balance 
equation based device simulator that can model advanced, compound, submicron 
devices, under all transport conditions (AC, DC, and transient response). This 
report documents the complete project, its planning, execution, and completion. 
The device models are described, along with representative simulation results 
for various devices, such as Si-MESFET, Si-MOSFET and GaAs-MESFET. 

^CQTJM^1^^0^ 
8 

19980519 097 
14. SUBJECT TERMS 15. NUMBER IF PAGES 

16. PRICE CODE 

17. SECURITY CLASSIFICATION 
OR REPORT 

UNCLASSIFIED 

18. SECURITY CLASSIFICATION 
OF THIS PAGE 

UNCLASSIFIED 

19. SECURITY CLASSIFICATION 
OF ABSTRACT 

UNCLASSIFIED 

20. LIMITATION OF ABSTRACT 

UL 
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) 

Prescribed by ANSI Std. 239-18 
298-102 



Quantum Mechanical Balance Equation Approach 
To Semiconductor Device Simulation 

Final Report 

Submitted to 

The U.S. Army Research Office 

By 

Stevens Institute of Technology 

Principal Investigator: 

Hong-Liang Cui 

Department of Physics and Engineering Physics 

Performance Period: 

October 1,1994 - September 30,1997 

Contract Number: DAAH04-94-G-0413 

a 2 December 1997 



1. Introduction 

It is becoming increasingly important to use computer-aided device simulators in the 
design and fabrication processes of semiconductor devices designing as semiconductor 
devices continue to decrease in size toward the deep submicron regime. The development 
of devices involves several iterations of trial and error in fabrication until a specified goal 
in terms of design conditions is reached. The application of device modeling can provide 
an inexpensive way to analyze and design the semiconductor devices before expensive 
device processing. Since traditional equivalent circuit models and close-form analytical 
models cannot always provide consistently accurate results for all modes of operation of 
today's small devices. This has meant that there has been a greater demand for models 
capable of increasing our understanding of how these devices operate and capable of 
predicting accurate quantitative results. 

To simulate a device, we solve a transport equation coupled with Poisson equation 
The accuracy of a simulation is usually determined by how accurately carrier transport is 
described. Generally, the more sophisticated the approach, the heavier the computational 
burden, so it is important to choose an adequate approach for the device under study. In 
the past, the study of electric behavior in a semiconductor device has been based on the 
drift-diffusion equation. The drift-diffusion model is a low-order approximation of the 
Boltzmann transport equation, it implies that mobility of the carrier is only a function of 
the local electrical field and it does not take account of the non-stationary characteristics 
such as carrier heating and velocity overshoot [1,2]. The application of this model is 
limited to devices where the spatial variation of the electric field is not very large. 
However, in modern devices, whose size is in the deep submicron region, the non- 
stationary phenomena are becoming more important. As a result, the drift-diffusion 
model is no longer applicable [3-6]. 

Monte Carlo simulation has been widely used for analyzing carrier transport in bulk 
semiconductors [7,8,9]. This method tracks the momentum and position of an ensemble 
of carriers as they move through a device under the influence of an electric field and 
random scattering forces. Random numbers are chosen to determine the time between 
collisions, the type of scattering events encountered, and the direction of the carrier after 
scattering. Monte Carlo solution of the Boltzmann transport Equation can provide a more 
detailed description of carrier transport. This is because band structure and various 
scattering mechanisms can be taken into consideration [10,11]. However, the noise in the 
solution and the enormous amounts of computation time required make this model 
impractical for device design. 

Another device simulation method is based on the hydrodynamic model, which is 
obtained by taking the first three moments of the Boltzmann Transport Equation [12-15]. 
These are the carrier continuity equation, the momentum balance equation, and the 
energy balance equation. Instead of solving for the carrier distribution function, the 
quantities of interest are calculated directly through the hydrodynamic equations. The 
hydrodynamic model has many advantages over the drift-diffusion model, such as its 
ability to treat high-field, nonstationary, and hot-electron effects. It can also model multi- 
dimensional devices without the excessive computational cost of the Monte Carlo 



simulations. But it has been known to give unphysical solutions in some cases, e.g., the 
spurious velocity overshoot spike in n+-n-n+ 'ballistic' diode [16]. The moments 
equations by themselves do not form a closed set of equations. The momentum and 
energy relaxation times are needed and can only be imported from outside of the system. 
These relaxation times are supplied from Monte Carlo simulations or simply assumed to 
be constant [17,18]. 

Recently, a hydrodynamic-balance-equations model of carrier transport in 
semiconductor devices based on the Lei-Ting balance equations has been developed 
[19,20,21]. The Lei-Ting balance equations have been successfully applied to many types 
of semiconductor microstructures, including studies of nonequilibrium phonon, 
nonstationary and high frequency transport [22,23]. Unlike other hydrodynamic equation 
based approaches to device modeling, where the various relaxation rates are imported 
from Monte Carlo calculations or simply assumed to be constant [24,25,26], the Lei-Ting 
hydrodynamic balance equations approach includes scattering in the form of frictional 
force functions due to electron-impurity and electron-phonon interaction and an energy 
loss function due to electron-phonon interaction. These quantities are calculated within 
the simulation process itself, as functions of the electron drift velocity, electron 
temperature, as well as the electron density, without an outside, separate Monte Carlo 
procedure [21,27,28]. Thus, besides the usual advantages of traditional hydrodynamic 
simulation approaches, the present method enjoys the added convenience of self- 
contained treatment of scattering. 

This document reports on a systematic implementation of the Lei-Ting hydrodynamic 
balance equations as a sophisticated, versatile device simulation package, capable of ID, 
2D device modeling tasks encountered by device designers today. In addition to steady- 
state modeling, transient device simulations based on the new hydrodynamic model are 
also described. Without any complicated mathematics, a decoupled method with a 
relatively large time step has been applied to the transient simulation. The time 
discretization algorithm for our transient simulator is based on the Crank-Nicolson 
method for time discretization, and for the algorithm of the time step selection we uses 
the local error to determine the size of each time step. 

This report is organized as follows. In chapter 2, we give a brief review of the 
commonly used models of semiconductor transport, such as Monte Carlo method, drift- 
diffusion model and hydrodynamic model. A nonparabolic multivalley Lei-Ting balance 
equation is given in Chapter 3. Hydrodynamic balance equations for a single valley 
semiconductor have been described in Chapter 4. In Chapter 5, the discretization of the 
hydrodynamic balance equations is performed. The Box Integration Method is used for 
spatial discretization and the Crank-Nicolson implicit scheme is used for time 
discretization. In Chapter 6, we present some simulation results of the application of our 
hydrodynamic model. Discussion and conclusion are given in Chapter 7. 



2. Models of Semiconductor Transport 

2.1      Boltzmann Transport Equation and Monte Carlo Method 

To simulate carrier motion in a submicron semiconductor device, one has to solve the 
Boltzmann transport equation and the Poisson equation simultaneously. The Boltzmann 
transport equation is given by: 

^v-.V,/+fvf/=m, (2,) 
dt r      h Kdty 

where f = f(f,k,t) is the distribution function, t is the time variable, v is the carriers 
velocity, F is the force on the carriers. The collision term on the right-hand side of 
equation (1) includes all the scattering mechanisms, and it is given by 

I") =J[^*'»*)/rCl-/r)-^(*,*,)/ta-/r)K.. (2-2) 
Here,  W(k,k)  is the transition probability, and Wijt^^dVgdt  is the conditional 

probability of the transition from the state k' in dVg in time dt given the an electron is 

initially in state k and the state k' is empty. A direct solution to the Boltzmann transport 
equation coupled to a self-consistent electric field pattern for any realistic semiconductor 
devices is rather difficult because the equation to be solved is a very complicated integro- 
differential equation with seven independent variables. 

The most popular technique for solving the Boltzmann transport equation is the 
Monte Carlo method. This method tracks the position and momentum of an ensemble of 
particles as they move through a device under the influence of the electric field and 
random scattering forces. Random numbers are chosen to determine the time between 
collisions, the type of scattering events encountered, and the direction of the carrier after 
scattering. The process is repeated, typically between 104 and 106 times, to simulate the 
carrier path through the device. For the time dependent problems, the sample ensemble 
must be sufficiently large to accurately represent the actual electron gas. 

The Monte Carlo simulation can provides more accurate simulations of carrier 
transport in a semiconductor device, it does have some limitations that should be 
mentioned. First, the intensive computer time required and the statistical noise associated 
with it limit this method's application. Although the statistical noise decreases as the 

number of simulated carriers, Nsim increases, but it only drops as -JN~, so 
unreasonably large number of carriers would have to be simulated. Second, Monte Carlo 
method is not well suited for dealing with the low-field region, barrier region and carrier 
generation-recombination processes. 



2.2 The Drift-Diffusion model 

Currently, most device modeling packages are based on the drift-diffusion (DD) model, 
which consists of the basic semiconductor equations 

---V<Jn) = -U, (2.3) 

V-(eV$) = e(.ND-n), (2.4) 
where 

J„=eDnVn-eniinV$. (2.5) 
Equation (2.3) is the carrier-continuity equation, and (2.4) is the Poisson equation. Here, 
Jn is the electron current density, n is the electron density, un is the electron mobility, U 
is the net recombination rate per unit volume, § is the electrical potential, and Afc is the 
donor density. Diffusivity and mobility are assumed to be related by the Einstein relation 

Dn=—»n, (2-6) 
e 

where T is the lattice temperature. The mobility is related to the momentum relaxation 
time and effective mass as follows: 

ex 
Vn= — ■ (2-7) 

mn 

Here xn and mn are momentum relaxation time and effective mass of electron. 
The drift-diffusion model can be shown to arise from the second-moment 

approximation to the Boltzmann transport equation. Since the drift-diffusion model are 
based on the assumptions that carriers are in local equilibrium with the lattice, and the 
mobility is a function of the local electric field, the applicability of this model is limited 
to devices where the spatial variation of the electric field is not very large. Due to rapid 
variations of the electric field in today's device, these assumptions are not always valid, 
and hence the transport coefficients cannot be considered to be dependent only on the 
local electrical field. The drift-diffusion model fails to predict phenomena such as carrier 
heating and velocity overshoot. Velocity overshoot can be explained if we recognize that 
the mobility is more closely related to the local carrier energy than the local electric filed. 
Velocity overshoot occurs because at the beginning of the high field region the mobility 
is at its low field value. As the carrier energy rises, the mobility drops until the saturated 
velocity is reached. Velocity overshoot is a non-local effect and also is referred to as an 
off-equilibrium effect, because carriers do not have an opportunity to establish 
equilibrium with the local electric field in submicron devices. Velocity overshoot can 
improve the performance of small device because the average carrier velocity can exceed 
the steady state limit. 

2.3 The Hydrodynamic model 

The hydrodynamic model consists of a set of equations expressing the conservation of 
charge, momentum and energy for each species of carriers [4]. These equations are 
derived by taking the first three moments of the Boltzmann transport equation. The 
hydrodynamic equations for electrons can be written as follows: 



|-iv.(J.)^, (2.8) 

7 d 

pndt 
ZJL 

\n J 
= eDnVn + ennn(-^-VTe -V<|>), (2.9) 

e 

^l + V-Sn=Jn-E-Uwn+n(-^-)c, (2.10) 

V-(sV$) = e(ND-n), (2.11) 
where reis the electron temperature, xpn is the electron momentum relaxation time, wn is 

the electron mean energy, E = -V(j) is the electric field. Here, the diffusion coefficient is 
given by the generalized Einstein relation 

A,=— »n* (2.12) 
e 

where Te is the electron temperature. 

The electron energy flow Sn is given by 

Sn=-KnVTe-(wn+kBTe). (2.13) 

The thermal conductivity K„ is related to the mobility un by the Wiedmann-Franz law: 

Kn=£ + c)ennn&
2Tn, (2.14) 

I e 
where c is an adjustable parameter, usually taken to be -1. 
The electron mean energy wn is defined as 

3 1 2 ^n=^BTe+-mnvn , (2.15) 

m„the electron effective mass, and v„ the mean velocity of electron. 
The collision terms are modeled by the relaxation-time approximation. The collision 

term in (2.10) is expressed as: 
dw w  — Wn <nb'=--—- > <2-16> dt T„ wn 

where %wn is the energy relaxation time for the electron. 
Two parameters are needed in applying the hydrodynamic model: the momentum 

relaxation time and the energy relaxation time. A common approach is to extract these 
parameters from bulk homogeneous Monte Carlo simulations. An alternative method is to 
use various empirical mobility models, such as [29]: 

^=—7^—7;     y=-^> (2-i7) l + y(w-w0) ei^vsat 

where vsat is the electron saturation velocity, uo is the low-field mobility, and x„,0 is the 
low-filed energy relaxation time in the homogeneous case. 

Although hydrodynamic models include more physics than does the drift-diffusion 
model, serious errors may occur in practice, e.g., the spurious velocity overshoot spike in 
n+ -n-n+ 'ballistic' diode. This spurious peak can be eliminated by varying the value 
of the thermal conductivity in the Wiedmann-Franz law. However, the value of the 



thermal conductivity depends on the doping distribution and on the applied voltages, 
therefore it has to be adjusted to fit the individual devices. 



3. The Lei-Ting Hydrodynamic Balance Equations for a Nonparabolic Multivalley 
Semiconductor 

The Lei-Ting balance equation approach for hot electron transport in semiconductors 
is based on the Heisenberg equations of motion for the total physical momentum, the 
total energy and the population of carriers in each energy valley, and the statistical 
average with respect to an initial density matrix having a lattice wave-vector shift, an 
electron temperature, and a chemical potential for each energy valley as parameters. 

Here, we consider a semiconductor system with an «-valley band structure in a electric 
field E and the energy band efl(£)has a general spectrum functions in the k space. The 
equations for momentum, energy and carrier numbers balance in the ath valley are 
written in the form [30]: 

j;(K\) = NaeE-Ka+Aa
ei+A

a
ep 

+ £*:? + £ä:;+ £ä:;, O.D 
b(*a) b(*a) b(*a) 

^W.*.) = N.eE'Vm-Wi-Y,K-Zw?> 0.2) al b(*a) b(*a) 

f*. = 2X>+2X\ 0.3) 
Ul b(*a) b(*a) 

Here, JVais the average number, vfl is the average velocity, sa is the average energy, Ka 

is the ensemble-averaged inverse effective mass tensor, A" is the frictional acceleration 
contributed from the intravalley scattering, Äfl6is the frictional acceleration contributed 
from the intervalley scattering, Ä™ is the frictional acceleration contributed from the 
electron intravalley-intravalley Coulomb scattering,   we

a  is the energy loss rate due to 

the intravalley electron-phonon scattering,  W°p
bis the energy loss rate due to the 

intervalley scattering, W"e
bis the energy loss rate due to the electron intravalley- 

intravalley Coulomb scattering, and Xa* is the rate of numbers change of the carriers in 
the ath energy valley. The statistic averages of the relevant quantities are defined by the 
following 

A.=2]T/[(e.(*)-u..)/:ra]> (3.4) 
k 

*. =^I,*.<.k)A(*Ak)-VL.VTa], (3.5) 
N a    k 

Sa=^-Z£aß)A<ßa(k)-K)/Ta], (3.6) 
™ a    k 

K* =^Z[v*V*M*M(ea(*)-^J/^L (3.7) 
■"A    k 

s,(*>6,(*-A). (3-8) 



where f(x) = l/[exp(x) + l] is the Fermi-Dirac function, pa is the average lattice 
momentum, \ia is the chemical potential, Ta is the carrier temperature, and the velocity 
function of carriers va is given by 

va(k) = V-kea(k). (3.9) 
The average drift velocity of the whole system is given by 

v^^E^v«, (3.10) 
a 

where N is the total carrier number in this system. 
The intravalley frictional acceleration due to the electron-impurity scattering is given 

by 

k,q 

..f(ßa(k),Ta)-f(Ea(k+q),Ta) ^ 

\e«PA[q,ea(k)-ea(k+q)f 
and the intravalley frictional acceleration due to the electron-phonon scattering is given 
by 

Ä;=-4*£|M(?)|2|ga^ 

(3.11) 

k,q 

f(sa(k),Ta)-f(ea(k + q),Ta) mtx) _   (sa{k)-sa(ß + q) 
\W )      { kBTa = ™ [q,ea(k)-ea(k + q)] 

The energy loss rate contributed from the intravalley scattering is expressed as 

W; = 4TC2|M(?A)|
2

 \gaa (k,q)f nud[sa (k) - sa (k + q) - «ij 

(3.12) 

k,q,X 

f(sa(k),Ta)-f(sa(k + q),Ta) (hCl* } q\ 

V  ""B*    J 
- n 

r . ^\ sa(k)-sa(k+q) 

kBTa 

(3.13) 
|^r [q,sa(k)-sa(k + q)]\2 

The intervalley frictional acceleration due to the electron-impurity scattering Ä"f is 
given by 

Ä:f=-27t«I2|"(?)r|gai(^?)|2vfl(^)8[8fl(^)-s6(^ + ^)] 
k,q 

x[f(sa(k),Ta)-f(sb(k + q),Tb)]. (3.14) 

And the intervalley frictional acceleration due to electron-phonon scattering Ä"* is given 

by 

K=^^\M^V^^i^aih^,q,0.^). (3.15) 

The frictional acceleration contributed from the electron intravalley Coulomb scattering 

Äfe is given by 

A*=-22|Vc(^2|^(*.^2k»(*^2[v.(*)-v.(^ + ^]Y"»(*,F,§).    (3.16) 
k,k',q 

The energy-loss rate due to the intervalley electron-phonon scattering is expressed as 
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Kb = -^Ek^^ri^^^f^^Xc^^^). (3.17) 
k,q,X 

and the intravalley Coulomb scattering energy-loss rate is given by 

CA=-2ZK^)rk(^?)ri^^'^)r[s
aW-ea(^ + ^)]Yo6(^JW)   (3.18) 

k.k'.q 

The rate of numbers change of the carriers in the ath energy valley due to the electron- 
impurity scattering is given by 

k,q 

and the rate of numbers change of carriers due to the electron-phonon scattering is given 
by 

K =-^YJ\M(q,X)\2\gab(k,q)\2A^(k,q,nsx). (3.20) 
k,q,X 

Here, 

K = [f(ia(km-f(ßb(k + q),Tb) n <*>*> %(k)    lb(k + qf 

■\f(sa(k)Ja)-f(£b(k + q),Tby 

8[sa(A:)-sd(^ + ^)-^] 

and 

Yab(kS,^) = 2itb[ea(k)-sa(k+q) + eb(k'+q)-eb(<k')] 

eT[q,sa(k)-ea(k + q)] e?A [q,sb(k')-sb(k' + q)] 

x[/(ea(^),rj-/(sa(^+?))7;)][/(si(^)7;)-/(6Ä(^ + ^))7;)] 

£*(£')- sb(k' + q)^ ea(k)-ea(k + q)^ 

kBTa 
- n 

kBTb 

(3.22) 

and the Bose distribution function is expressed as 

n(x) = (3.23) 
exp(x) -1 

In the above equations, n\ is the impurity density, Cl-X is the phonon frequency of the Xth 

branch with wave vector q, the intravalley, u(q) is the electron-impurity potential, 
M(q,X) is the electron-phonon matrix element, vc(q) is the electron-electron Coulomb 

potential in the plane-wave representation, and £„„(£,#) and gab(k,q) are, respectively, 
the intravalley and intervalley form factors related to the wave functions of the ath and 
Mh energy valley, 

g(k,q)\2 = (aÄ+. +c,c,+.cose)2, (3.24) 

with 

ak = 
1 + as(k) 

l + 2cte(£) 

1/2 

Ck = 

as(k) 

l + 2as(ic) 

V2 

(3.25) 



11 

For intravalley scattering, we consider the intravalley carrier screening in the random- 

phase approximation (RPA), efA (#,©) is the RPA dielectric function of the ath valley. 
For a Kane-type nonparabolic energy band, the relationship between the energy and 

the wave vector can be written as 
1 

«.<*) = 2a 
■N/l+4as<p)(£)-l (3.26) 

where a is the nonparabolic parameter. The parabolic energy dispersion of the ath valley 
is given by 

8.W(*) = 
(*,-*«)' SK-K? . (*,-kj2 

2mm 2may Im^ 
(3.27) 

where l/m^, \lmay, and l/m^ are Hhex,y, andz components of the inverse effective mass 

tensor, respectively, and ka indicates the position in the Brillouin zone of the center of 
the ath valley. 

The scattering mechanisms which have been considered may include intravalley 
electron-impurity scattering, intravalley electron-phonon scattering (acoustic and optic), 
intervalley electron-phonon scattering (acoustic and optic), and electron-electron 
interaction. 

For Si, the electrons which contribute to transport are those in the six equivalent 
valleys which lie along the < 100> directions, as shown in Fig 3.1. 

Fig. 3.1 Constant energy surfaces for the conduction band of silicon. 
There are two types of intervalley scattering in Si: g-type (between parallel valleys) 

and/type (between perpendicular valleys). So that, the squared matrix elements forg- 
type andy-type scatterings are represented by 



and 

12 

W =^7 (fora=l,6=2), (3.28) 

W = ^TJ (for 0=1,6=3,4,5,6). (3.29) 

For the acoustic intravalley scattering, the squared matrix elements is given by 
i,, i2    hE,2q Kl  •-£. (3.30) 
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Table 1. Physical parameters for Silicon[30]. 

Mass density d 2.329 g/cmJ 

Longitudinal sound velocity V, 9.04x10s cm/s 
Longitudinal effective mass mi 0.916 m0 
Transverse effective mass mt 0.19 m0 
Dielectric constant K 11.7 
Longitudinal      optical     phonon h(o0 0.063 eV 
energy 
Acoustic deformation potential Ei 9.2 eV 
Nonparabolicity parameter a 0.5 eV"1 

Intervalley scattering 

Equivalent temperature (K) Coupling constant (xlO8 eV/cm) 
/-type "A 

210 
500 
600 

0.15 
3.4 
4.0 

g-type 

140 
210 
700 

0.5 
0.8 
3.0 
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4. Hydrodynamic Balance Equations for a Single Valley Semiconductor 

4.1      Lei-Ting Balance Equation for a Single Parabolic Energy Band 

The Lei-Ting balance equations for a single parabolic band system can be summarized as 
follows [19,21]: 

^--V-(J) = -U, (4.1) 
dt     e 

—-+(v-V)v = + — E + ^— , (4.2) 
at 3 mn     m        mn 

^L + v.Vu = --uV-v-W-v-f-V-Q (4.3) 
dt 3 

V2<|> = -^(]V   -«)> (4.4) 
8        D 

where « is the statistical average of the electron number density, v is the average 
velocity of the electrons, U is the net recombination rate per unit volume, u is the 

average kinetic energy of the relative electrons. The symbol / denotes the frictional 
force experienced by the electrons due to impurity and phonon scattering, W is the 

energy-loss rate of the electron system to the phonon system, V-Q is the heat flow. The 
symbols e and m are the electron charge and effective mass, s is the static background 
dielectric constant, ND is the net doping concentration. 
The average local kinetic energy density of the relative electrons is given by 

u(R) = 2%s1;f0[(e-k-ii(R))/kBTe(R)] . (4.5) 
k 

The local chemical potential \i{R) is related to the local electron density n(R) via the 
relation 

n(R) = 2j;/„[(8j -n(R))/kBTe(R)] , (4.6) 
k 

where s£ is the band energy of the electron, and./) is the Fermi-Dirac function. 
With the help of the Fermi integrals, the local carrier number and the internal energy 
densities can be expressed as 

n = Nc(Te)9yi{p.e), (4.7) 

u = hBTeNc(Te&3/(ae), (4.8) 
2 /2 

where 

a« = *T> (4-9) K
BIe 
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and the effective density of states in the conduction band Nc is 

Nc=2{—^-Y\ (4.10) 
2%h 

The Fermi integral of order j is given by 

^^T^TTrf^—/\   1- (4-11) J r(y + l)Jo     expO>-jt) + l ' 
At room temperature, the variable x in the Fermi integral (4.11) is much less than zero, 
so that the Fermi integral can be approximated by its nondegenerate form 

7(x) = exp(x), (4.12) 

for not too high densities. 
The resistive force is 

/=«,£ U(q) ?n2(<7,G>o) 

+ 2ZM(gl
2gn2(g>D+n?1)x\n (rj-fr-ni T *') 

qX                                                                       B    K 1             B K 1„ 
LB B  

e           . 

and the energy loss rate is 

(4.13) 

W = 2j:JM(qX)\2^UM^+^)x \nB(Y^)~n*(~kT)\' (4,14) 

where ©0 = q-v(R), nB(x)=(ex-1)_1 is the Bose-Einstein factor, rij is impurity density, 
Q^ is the phonon frequency of wave vector q and branch index X, U(q) is the Fourier 

transform of the electron-impurity interaction potential, M(q,X) is the electron-phonon 
coupling matrix element, U.2(q~,<ü) is the imaginary part of the density-density 
correlation function of electrons that can be obtained within the random-phase 

approximation (RPA) or beyond. Note that / and W depend on the position vector R 
through the quantities n(R), Te(R), and v(R). 

4.2      Scatting Mechanisms 

The total resistive force density/is composed of two parts, due to impurity scattering and 
phonon scattering: 

f = fimp+fph   , (4-15) 
which in the case of a three-dimensional bulk semiconductor are given as 

fimp = -^^ldx^dq\qU{qfxP2{q^) , (4-16) 

f* = ~lf^\\^[d^^M^XixP^^ +CD0)A«fl(Q^)ö)0),     (4.17) 
(Z7I) n   J_1   -u       x 

where co0 = qvx ,and (ße = 1 / kBTe)  , 
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AnB(ngX,o>) = nB$hnqX)-nB(flh(ngX +©)). (4.18) 

The energy loss rate is determined by inelastic electron-phonon scattering 
2m kKT„ fi    p» , „  „   , ,2 

^d-ln dqlgnqX\M(qX)\ P2(q,QgX+o,0)AnB(aqX^0).    (4.19) W = -- 
(2%yv - -   „ 

Usually, the resistive force densities and energy-loss rate are calculated based on the RPA 
density-density correlation function, 

nf(<7,tö) 
n2(?,G>)=-     , .„to,    .. 

where n<0) = -(m2kBTe/2nti4q)P2, and 

(4.20) 

/>(%,a>) = ln 

c 
1 + exp- 

ßfc2 

e 

2m 

(            \ 
q    m(o 

,2     *?, 

2 

+ a • 

• 

J 

1 + exp- 

V 

ß/j2 

2m 

'? + mm 

^2     hq) 
+ a 

(4.21) 

is the noninteracting electron density-density correlation function, and vc(#) = e2le q2 is 
the Fourier transform of the electron-electron Coulomb interaction potential. 

The scattering of electrons by impurities such as ionized donors are described by the 
screened Coulomb potential, whose Fourier transform is given by 

2 

U(q) = 

where qD is the Debye wavevector 
6($' +qD) 

2 e2W 
Q    =  D     s kBTe 

JD ' 

(4.22) 

(4.23) 

with the temperature and density dependent factor fD given by 

Z1/2K) fD = (4.24) 
?i/2(ae) 

The electron-phonon scattering includes acoustic phonons (with deformation potential 
coupling and piezoelectric coupling), optical phonons (polar and nonpolar), intervalley 
phonon scattering, as well as interface and confined phonon scattering. We consider only 
acoustic deformation coupling and nonpolar optic coupling in our example of a silicon 
device. 

In the case of deformation potential for carrier acoustic-phonon interaction, only the 
longitudinal phonon contributes. The carrier-phonon matrix element takes the form 

l"<«tf-§£. (4-25) 
where d is the mass density of the lattice and Ex is the deformation potential. For the 
dispersion relation of the longitudinal-acoustic phonon we use the Debye spectrum 

Qq=ns=vsq, (4.26) 
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with v, denoting the sound speed for longitudinal waves. For the optic-phonon scattering, 
we take the optical mode frequency as a constant (the Einstein model): 

"^="o- (4.27) 
For the matrix element of electron-nonpolar optical-phonon interaction, we use 

l"(«tf-g. (4.28) 
where D is the shift of the band edge per unit relative displacement of the two sublattices 
relative to the optical mode. 

4.3 Equivalence to the Conventional Hydrodynamic Equations 

The Lei-Ting hydrodynamic balance equations can be shown to be equivalent to the 
hydrodynamic equations derived from Boltzmann equation [6]. The latters have the form 

V2$ = --(ND-n), (4.29) 
s 

~-V<J.) = -U, (4.30) 
dt    e 

«EÜ+V.S.J...8-OH-.+Ä, (4.3!) 
ot ot 

3. -=« ■ V)(i) =^(V»+^Vr, --SLv*). (4.32) 
ef n f Te kBTe 

The energy flux density is 

Sn=Q-^-(^+\mv2), (4.33) 
e   3»    2 

where Q = -KnVTe is the heat flux. 
The average single particle energy is given by 

w = ^mv2+-, (4.34) 
2 n 

and the energy relaxation rate is related to the rate of change of the particle number and 
the energy dissipation rate given by 

«£>•--{"«!>•+,rK (4-35) 
ot n[n  ot J 

with 

&c=-U. (4.36) 
ot 

If the recombination-generation processes were not taken into account (U = 0 ), the 
energy relaxation rate reduces to 

nAc=-W. (4.37) 
ot 
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The average carrier energy consists of the thermal energy \kBTe and the kinetic energy 

}mnv
2. But in this work we neglect the kinetic energy which is negligible compared with 

the thermal enerov the thermal energy. 
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5. The Discretization of the Semiconductor Device Equations 

The hydrodynamic balance equations consist of the Poisson and the three balance 
equations. These equations form a set of nonlinear, coupled, time-dependent partial 
differential equations. The solution methods can be divided into two categories: coupled 
(Newton) or decoupled (Gummel) method [31]. The use of the Newton method is limited 
by the requirement of proper choice of the initial guess. If the initial guess is far from the 
true solution, convergence is usually difficult to achieve. Furthermore, since the 
equations are solved simultaneously, CPU memory requirement of the Newton method is 
higher than that for a decouple method. In the decoupled method, the major variables are 
solved with currently available values iteratively. The advantages of decoupled method 
are simplicity, low memory requirements and convergence for arbitrary initial guesses. In 
our simulator, we use Gummel method to solve the hydrodynamic balance equations. 

It is well known that the numerical solution of central difference scheme for the drift- 
diffusion equation exhibits oscillations if the grid is too coarse or if the drift velocity is 
too large relative to diffusion. Although these oscillations can be avoided by using 
sufficiently fine grids, it will cost too much computation time. This difficulty can be 
circumvented by introducing the Scharfetter-Gummel scheme or by using the artificial 
diffusivity. We chose the Scharfetter-Gummel scheme for the discretization of the flux 
continuity equations in this work. In the Scharfetter-Gummel scheme, a first-order 
ordinary differential equation is integrated by finding an integration factor. This approach 
results in an exponentially weighted difference scheme that prohibits the oscillations in 
the solution without requiring an excessive number of grid points. 

5.1      The Box Integration Method 

Device simulation requires numerical solution of partial differential equations. To 
solve the partial differential equations on a computer, they must be discretized on a 
simulation grid. The device is partitioned into a finite number of subdomains as 
illustrated in Fig. 5.1. 
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Fig. 5.1 Illustration of a typical mesh of a FET device for numerical solution of the 
hydrodynamic equations. 

In this work, the spatial discretization is performed by using the Box Integration 
Method (BIM) [32]. The Box Integration Method is a generalization of the finite 
difference method. Within this method, each node of the mesh is surrounded by a 
subdomain (box). Each box is defined by the normal bisectors of the sides emanating 
from a given node, as shown in Fig. 5.2. 
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Integration Box 

Grid Structure 

Fig. 5.2 Sample of Box Integration Method 

We integrate the hydrodynamic balance equations over a subdomain. The divergence 
operator are integrated using Gauss' theorem. So that, we have the following equations: 

(5.1) 

(5.2) 

(5.3) 

(5.4) 

[.D-ldT, =e\a(p-n + N+
D-N-A)dni, 

Jr,   "    "    '       Jo, ft      '     in,        '' 

* UdSl. , f J-tdT,=-e\ ^-d£i,-e\ \ 
Jr,:   P    "    ' Jo,. Qt       '     Jo, 

dp_ 
dt' 

d(nwn) 
Jr,   n    '■    '        Jo,      At '     k dt 

d(pwp) 

wn-w0. E-Jn-Uwn-n(-^—±) fi?n,., 

k,   P   "    '       Jo,     fit Jo, 

wp - w0. E-Jp-Uwp-p(-^—^)dQi, 
pw 

(5.5) 

where r(- and Q, represent the boundary and the area of the z'th box, respectively, and /„ 
is the external vector normal to r,-, as shown in Fig. 5.3. 
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Fig. 5.3 The triangular elementary domain of the discretization grid. 

The discrete form of the RHS of equations (5.1)-(5.5) is obtained by evaluating 
integrands at the node / and multiplying them by the box's area. For the left hand sides, 
we need to evaluate the flux of each vector through the boundary of the box. The discrete 
form of the LHS can be expressed as 

jF.f<r,.=5>,^., (5.6) 

where Fy is the component of the flux flowing between node i enclosed by box Q. and a 
neighboring node j, and dtJ is the flux cross-section. 

5.2    Poisson Equation 

The electrical displacement vector projected over the element side (i, j) is: 

(5.7) 

where Ly is the length between node i and j. Under the assumption of the Boltzmann 
statistics, the relations of the electron and hole concentrations with the potentials can be 
written as 

n = nie exp- 

P = nie 
exPi 

g(4>-¥,.) 

e(MVH>)] 
kBTp 

(5.8) 

(5.9) 
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where nie is the effective intrinsic carrier concentration and\|/nand\|/J, are the quasi- 
Fermi potential of electron and hole. The linearized Poisson equation is thus slightly 
changed from its standard form, and now reads 

V-^jHfy+jf)^ = -V'Dij+e(p-n + N+
D-N-A), (5.10) 

Be B  p 

where 8Dy is defined by 

8fy=y-(84>,-8^), (5.11) 
Lij 

and 8(|) is a slight deviation of the electric potential. By using the Box Integration 
Method, we have the discretized Poisson equation for a slight deviation of the electrical 
potential 

Zd^+SK^-ffa ^-ZtA+eiP-n + K-N-M.        (5.12) 
j*i KB1e      KB1p j*i 

5.3      Momentum Balance Equation 

The discretization of momentum and energy balance equations is carried out by a 
generalization of the Scharfetter-Gummel discretization scheme [33,34]. The balance 
equations are projected onto the side Ly and the projections are assumed to be constant 
over the side. And we notice that the first order differential equation of the form 

^+P(x)y = Q(x), (5.13) 
ax 

has an integral solution of the form 

Equation (5.13) can be rewritten as 

o</r,Ö(ti)eJ°^ (5.14) 

yj y' - = 1. (5.15) 

{'di\Q(rteJ PdnQWe ' 
"xi Jx, 

The second term on the left-hand side of (4.32), which is the convective term, is 
generally small and is taken to be zero. Thus, the electron current density is projected 
onto the element side Ly leading to a first order differential equation 

J.,    _A+(!^.__£__rfL)B> (5.16) 
enkjv      fa..     TedXij    kBTedXij 

f 
where xy is the coordinate on the side Ly. In order to implement the integration, we make 
an approximation that electron temperature, electric potential and total resistive force 
density are piecewise linear between two adjacent nodes. With the help of the 
Scharfetter-Gummel method, the current density along the mesh line between two 
adjacent nodes i and j can be expressed as [21,26] 



j   =ek (^) eJ     ei 

/ LiMTej-Tei) e] 1ei 

where 5(A) is the Bernoulli function 

B(A) = 
exp(A)-l' 

and 

A  _HT,~Tei) 
U rp      rp 

ej      J ei k, 
.^.-^)-2(Tej-Tei) 
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(5.17) 

(5.18) 

(5.19) 

The symbol %-  stands for the expectation value of an arbitrary variable Z, over Ly. 
Further, we assume an exponential variation of the electron concentration along the side 

with 
« = «,exp(ouc..), 

1      »,• 
a = — ln(^), 

(5.20) 

(5.21) 

where n, and rij are the electron concentrations at node i and j. Thus, the expectation value 
of the electron concentration is given by 

1  r*i n,-n, 
n.. = — \Jndx = J- ■ . (5.22) 
'    Lyh ln(«y)-ln(",) 

The drift velocity between two nodes can be obtained by means of Jy =-enyv. Therefore, 
the discretized momentum balance equation is 

Similarly, the discretized form of the hole current density is expressed as 

Pi pvTp 

Jnil =~e'cB\    T~)« 

T   -T 
pj     Pi 

where 

/   "%ln(r,  -T) 

HTpj-Tpi) 

Pj Pi 

Aii=- V rp        rp $.-M + 2(TpJ-Tpi) 
pj       'pi      LKB 

(5.23) 

(5-24) 

(5.25) 

5.4      Energy Balance Equation 

We use a similar procedure for the energy balance equation. The electron energy flow 
density is rewritten as 

z e 
(5.26) 

Then (4.31) can be expressed as 
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d(nw„)   „ -     „   m\Jn\       ,,J 
(5.27) 

The electron energy flux density is projected onto the element side Ly leading to a first 
order differential equation 

" dfy     e 2 * e (5.28) 

Employing the Scharfetter-Gummel method, the discretization of the energy flow density 
can be written as [16,27,35]: 

S^-^lBi^-Bi-c»^], 
where 

,5 
"2 

Kn^G + Wl^X-n,,; 

(Ö,, = kR IJ r%      a — 
2       e  K„ 

,nvTe 

(5.29) 

(5.30) 

(5.31) 

Finally, the discretized energy balance equation is 

dt 2eV 
Similarly, the discretized form of the hole energy flux density is expressed as 

&. = — 
K 

h 
Bücö^-Bi-co^], 

where 

*,,=(f+«)*2(^),Jv 

CO, 5* Ü 
I'D   

e  K. 

(5.33) 

(5.34) 

(5.35) 

5.5   The Numerical Method for the Transient Problem 

The time discretization for the carrier continuity and the energy balance equation we 
used here is the Crank-Nicolson implicit scheme [36], which is second-order accurate in 
time and is usually stable for large time steps. Applying this scheme to the carrier 
continuity and the energy balance equation, we have 
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n' + 1-n' 

At 2 

(mv)m-(nwy 

At 

"iv.Alflv..^ (5.36) 

=V( 2'     v 

m J' 

1 
+ -< 

2 
V-(- 

2eV2 e 

m 

2eln 2 „t+1' 

jt+l 

-ef+1)- v-5"+I-r'+1 

Our simulation process starts with the potential solution 

(5.37) 

VY+=--(^-»'+I). (5.38) 
s 

While solving for the potential <|)t+1 at time level (t+1), the carrier concentration nt+1 at 
(t+1) is not available. So that, we need to know the value of the carrier density. If we 
employed the fully explicit scheme into (5.2), then we have the differential form of the 
carrier continuity equation 

At        Ke       n      ' 
Thus, the approximate solution of the carrier concentration at time level (t+1) is 

n. t+i = nt+At--V-Ji-At-U. 

(5.39) 

(5.40) 

We put this approximate solution into the Poisson equation to obtain a modified Poisson 
equation [37] 

1 
VY   =—(ND-n'-At—V-J'n+At-U), (5.41) 

where n' and /„' are the carrier density and current density at time level (t), respectively. 
To avoid the nonconservation of charge during the transient state, the potential 

distribution should be corrected at each time step by solving the Poisson equation [38]. 
Thus, after obtaining a solution of one of the time-dependent hydrodynamic balance 
equations, a procedure to correct the Poisson equation is necessary to ascertain a self- 
consistent solution. 

We will use the solution of the modified Poisson equation to update the quasi-Fermi 
potential 

<' 
u+i k T' 

n 
\     ie  J 

(5.42) 

Following that, we put this quasi-Fermi potential into the Poisson equation to obtain the 
accurate potential at time level (t+1). We use an iterative process to solve Poisson 
equation with the quasi-Fermi potential kept constant [31]. After solving the Poisson 
equation, we have an accurate potential at time level (t+1). We use this new quasi-Fermi 
potential and the new potential to calculate the total resistive force density at time level 

(t+1), fM, and use this ft+1 in Eq. (5.17) to get the current density at time level (t+1). 
In this way, we can solve the carrier continuity equation. Because the carrier density has 
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already changed, this caused the electric potential to change, too. For self-consistency, we 
need to solve the Poisson equation again. 

The solution nt+l is used to update the quai-Fermi potential \|/„, which is given by [25] 

^+1^vi+1-^ln(^). (5.43) 
e        na 

Then we put this quasi-Fermi potential into the Poisson equation to obtain the new 
potential and the new electron density at time level (t+1). We use all these new solutions 

to calculate the total resistive force density ft+1 and the energy-loss rate Wt+l. 
With all these data at time level (t+1), we can solve the energy balance equation (5.37). 

After solving the energy balance equation, the electron temperature at time level (t+1) is 
obtained, which is used to update the quasi-Fermi potential first. The updated quasi- 
Fermi potential is given by 

k Tt+l rnM\ 
n 

\     le   J 

(5.44) 

The new electron temperature will affect the electron concentration distribution, and in 
turn, the electric potential. Thus, we need to solve the Poisson equation again to get the 
accurate electric potential and electron density. Here we have all the solutions at time 
level (t+1), which can be used as initial solutions to solve all the equations again. The 
iterative process will come to an end when the total time is equal to a predetermined 
length of time, e.g., 10 ps. The flow chart of the transient simulation procedure is shown 
in the Fig. 5.4. 

For the automatic time step selection, there is a little difference between our method 
and [39]. We utilized the relative difference 8* between the exact solution and the 
approximate solution of the carrier density at time level (t+1) to select a new time step. If 
we take a time step and produce 5*, the new time step will be estimated as 

A* =gAt ,g = S 

and 

8* 

°-5 /J.9995 8*>8f ■=r 
8 <8f 

(5.45) 

8*=^ ;^-L, (5.46) 
n 

where s is a safety factor and 80 is the given tolerance which is chosen to be 0.008 in 

the following example. If 8* is larger than 80, the new time step will decrease. On the 

other hand, when 8* is smaller than 80, the time step size will increase for the next 
iteration. Special care is taken not to let the time step grow too fast. Here, we restrict the 
value of g by a factor 1.2. 
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Start 

t = t + At 

Solve Modified Poisson equation *     Solve Poisson Equation 

Solve Carrier continuity equation Solve Poisson Equation 

Solve Energy balance equation Solve Poisson Equation 

Determine the new time step 

Update initial condition 

No 

Fig. 5.4 Flow chart of transient solution procedure. 
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6. Device Simulation Results 

We have applied our hydrodynamic balance equations to the simulation of one- 
dimensional and two-dimensional submicron Si devices. Scattering mechanisms 
considered are ionized impurity scattering, acoustic phonon scattering via deformation 
potential coupling, and nonpolar optical phonon scattering. In this work, we included 
static screening only. 

6.1      One Dimensional Si n+-n-n+ Diode 
Here, a one-dimensional submicron n+ -n-n+ diode has been simulated. It has some 

resemblance to the n-channel of a silicon MOSFET. Although this devices is rather 
simple, it is very useful for investigating basic transport phenomena. It is also simple 
enough to do a Monte Carlo simulation, so that the latter may be compared with our 
results. Further, there are so many different device modeling attempts on such a device, 
so that we can readily compare our results with those obtained with different approached. 
This device is a 0.6 urn silicon structure with a symmetric doping profile. Its inner region 
is 0.4 urn long with a doping level of ND=2X10 cm", while the emitter and collector are 
each 0.1 urn long with a doping ND=5X10

17
 cm"3. There is smooth grading of the doping 

level at the junctions between the electrodes and the inner region. The mesh point spacing 
can be uniform or nonuniform. Here we used 60-node grids that are uniformly distributed 
along the device length. The grid spacings are Ax=0.01um. We chose the lattice 
temperature T0 to be 300K. 

n+ 

5xl017 

n 

2xl015 

n+ 

5xl017 

4 O.lUm" 0.4|Um -M- ttrpm* 

Fig. 6.1 Ballistic diode 

6.1.1    Steady State Simulation 

We have applied the multi-valley Lei-Ting balance equation to a six-valley system 
(silicon). The intravalley acoustic-phonon scattering and six phonon models of 
intervalley scattering are considered. Here the energy band structure is taken to be 
parabolic. 
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In our simulation of the device, we have the left terminal of the diode grounded (VL 
=0), and a positive bias is applied to the right terminal (VR=V), so that the electrons are 
injected from the left end and move toward the right end. We assume that the contacts are 
ideal ohmic contacts. From this assumption, it preserves charge neutrality and thermal 
equilibrium at the contacts. We used the following boundary conditions in this example: 

Te(L) = Te(R) = T0, 
n(L) = ND(L),     n(R) = ND(R), 

k T 
In 

rn(L)^ k T 
In 

rn(R)^ 

V   "te   J 
+v, 

(6.1) 
(6.2) 

(6.3) 
V "*.  J 

where V is the applied bias. The electron velocity and normalized temperature are shown 
in Fig. 6.2 and 6.3. From our simulation results, we see that the drift velocity exhibit 
some overshoot at the high field region before it reaches the collector. The maximum 
drift velocity approaches the saturation velocity as the applied bias increases. The 
electron temperature also behaves as expected. All of our results are in general agreement 
with other available results, including details of velocity overshoot, obtained with Monte 
Carlo simulations [40,41]. We also note that the spurious overshoot peak, which usually 
exists in other hydrodynamic models when electric field drastically decreases, is absent in 
our result. 
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Fig. 6.2 Electron drift velocity as a function of position in the ballistic diode, under the 
bias voltage of IV, 2V, 3V, 4V and 5V. 
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Fig. 6.3 Electron temperature as a function of position in the ballistic diode, under the 
bias voltage of IV, 2V, 3V, 4V and 5V. 
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6.1.2   Transient Simulation 

Here, we used the single parabolic hydrodynamic balance equation to perform the 
transient simulation. 

The boundary conditions for temperature and electron concentration on the emitter and 
collector are the same as the steady state simulation. We applied the following equations 
for the electrostatic potential: 

<)>(£) = ML in 
r<L)^ pÄh 

rn(R)^ 

\  nie   J "ie 

+ V(t), (6.4) 

where V{t) is the applied bias. The initial conditions were obtained from the steady state 
solution with applied voltage V=0. Then at time t =0, we applied a step voltage to the 
anode. 

Although the Crank-Nicolson scheme is an implicit time integration method, it still has 
stability problems related to the time step size[42]. In our simulation, the first time step is 
1.0x10 s and the maximum time step is 5.0xl0~14s. Although we restricted the 
maximum time step to ensure stability, it is still an efficient method for transient 
simulation. For example, it only needed 221 time steps in the case of the 4V bias. From 
our simulation results, we see that the drift velocity exhibit some transient overshoot at 
the high field region before it reaches its steady state. The electron temperature also 
behaves as expected. All of our results are in general agreement with other available 
results, including details of velocity overshoot, obtained with other hydrodynamic 
simulations [43,44] and Monte Carlo simulations [45,46]. Velocity overshoot can 
improve the performance of small device because the average carrier velocity can exceed 
the steady state limit. 
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Fig. 6.4 (a) Electron drift velocity, (b) Electron temperature as functions of time and 
position along the device for a bias voltage of IV. 
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Fig. 6.5 (a) Electron drift velocity, (b) Electron temperature as functions of time and 
position along the device for a bias voltage of 2V. 



Velocity vs. Time (3V) 

35 

0.40 

0.30 

Position 
(micrometer) 

Time (ps) 
0.00 

Temperature vs. Time (3V) 

0.3 
2       Position 

(micrometer) 

Time (ps) 

Fig. 6.6 (a) Electron drift velocity, (b) Electron temperature as functions of time and 
position along the device for a bias voltage of 3 V. 
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Fig. 6.7 (a) Electron drift velocity, (b) Electron temperature as functions of time and 
position along the device for a bias voltage of 4V. 
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Fig. 6.8 (a) Electron drift velocity, (b) Electron temperature as functions of time and 
position along the device for a bias voltage of 5 V. 
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6.2     Two Dimensional MESFET 

We have applied the Lei-Ting hydrodynamic balance equations to the simulation of a 

two-dimensional MESFET of the size 0.6umx0.2um. This device geometry and doping 

profile are depicted in Fig. 6.9. The substrate of the device is doped n-type with doping 

value of lxl017cm"3. The two n+ regions are of size 0.1umx0.05um. The doping of these 

regions is 3x10 cm". This device is a special form of a junction field-effect transistor. 

The lattice temperature To is taken as 300K. 

0.0 V 
Source \ 

O.Opun ^^l*^'^ X 
0.1 um~H 

0.2 urn 

-0.8V 
Gate 1 

JL2\im 

n 

2.0V 

^ 0.6um 

n: 1.0*1017(cm-3)    ;   n+: 3.0*1017(cm-3) 

Fig. 6.9 A two-dimensional Silicon MESFET device. 
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6.2.1   Steady State Simulation 

We apply a voltage bias 2V at the drain and a negative voltage bias -0.8V at the gate. 

For the boundary conditions, we assume the Schottky contact on the gate and the ideal 

ohmic contact on the source and drain. This example is the same as the device presented 

in (Aluru et al. 1994). For simplicity, a uniform rectangular grid is used here. 

The equipotential contour plot is shown in the Fig. 6.10. The electron concentration is 

plotted in the Fig. 6.11. The profile of the normalized electron temperature is shown in 

the Fig. 6.12(a). We can see that the peak temperature is near the drain. The longitudinal 

electron velocity profile is shown in the Fig. 6.12(b). The spurious velocity overshoot 

spike which appears in the solutions with the hydrodynamic model (Aluru et al. 1994) is 

virtually absent in our results. 
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Fig. 6.10 Equipotential contour as a function of position. 
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Fig. 6.11 Electron concentration as a function of position. 
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Fig. 6.12(a) Electron temperature as a function of position. 

0.0 

Y-Axis 

1.5E+07 

-1.0E+07 

5.0E+06    t? 
at 

0.0E+00    £ 

-5.0E+06 

1.0E+07 
0.60 

0.00 
0.10 X-Axis 

Fig. 6.12(b) Electron drift velocity as a function of position. 
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6.2.2 Transient State Simulation 
We have also performed transient simulation of a two-dimensional MESFET [28]. The 
device is the same as before. The initial conditions were obtained from the steady state 
solution with applying a voltage bias 2V at the drain and a zero voltage bias at the gate. 
For the boundary conditions, we assume the Schottky contact on the gate and the ideal 
ohmic contact on the source and drain. Then at time t =0, we applied a step negative 
voltage bias -0.8 V at the gate. 

In our simulation, the first time step is 1.0xl0"16s and the maximum time step is 
1.0xl0"14s. Although we restricted the maximum time step to ensure stability, it is still an 
efficient method for transient simulation. From our simulation results, we see that the 
drift velocity exhibits some transient overshoot at the high field region before it reaches 
its steady state. The electron temperature also behaves as expected. All of our results are 
in general agreement with other available results, including details of velocity overshoot, 
obtained with other hydrodynamic simulations and Monte Carlo simulations. The 
simulation results are presented in the figures in the form of spatial distributions at 
various times during the entire transient process. These include the electron velocity, the 
electron temperature and the electric field. Also presented are equipotential contours as 
well as the terminal currents as functions of time. 
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Fig. 6.13 Terminal currents as fucntions of time. 
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Fig. 6.14(a) Electrostatic potential at 0.05ps 
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Fig. 7.14(b) Electrostatic potential at 0.5ps 
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Fig. 7.14(c) Electrostatic potential at lps 
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Fig. 7.14(d) Electrostatic potential at 2ps 
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Fig. 7.14(f) Electrostatic potential at lOps 
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Fig. 6.15(a) Longitudinal velocity at 0.05ps. 
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Fig. 6.15(b) Longitudinal velocity at 0.5ps. 
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Fig. 6.15(c) Longitudinal velocity at lps. 
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Fig. 6.15(d) Longitudinal velocity at 2ps. 
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Fig. 6.15(e) Longitudinal velocity at 5.5ps. 
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Fig. 6.15(f) Longitudinal velocity at lOps. 
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Fig. 6.16(a) Electron Temperature at 0.05ps. 
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Fig. 6.16(b) Electron Temperature at 0.5ps. 
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Fig. 6.16(d) Electron Temperature at 2ps. 
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Fig. 6.16(e) Electron Temperature at 5.5ps. 

0.0 

15.0 

0.0 

0.0 
(micrometer) 

Fig. 6.16(f) Electron Temperature at lOps. 
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Fig. 6.17(a) Longitudinal electric field at 0.05ps. 
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Fig. 6.17(b) Longitudinal electric field at 0.5ps. 
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Fig. 6.17(c) Longitudinal electric field at lps. 
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Fig. 6.17(d) Longitudinal electric field at 2ps. 
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Fig. 6.17(f) Longitudinal electric field at lOps. 
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6.3     Two Dimensional MOSFET 

In this section, we present our simulation results of the behavior of a deep submicron 
n-channel silicon MOSFET. This test device is the same as the device presented in [48]. 
It is characterized by an oxide thickness toX=7nm, a junction depth x,=0.1um, and a 
substrate doping level of 1017cm"3. The length of the source and drain contact is 0.15um, 
and the doping value in the n+ region is 2xl020 cm"3. The effective channel length is 
approximated 0.25urn. The device structure and doping profile are shown in Fig. 6.18. A 
gaussian doping profile is assumed within the source and the drain diffusions. The doping 
profile has been shown in Fig. 6.19. This simulation was applied on a 21x20 nonuniform 
mesh. 

The first set of our calculations were performed on the silicon MOSFET with 
VDS=3V and VGS=3V. Fig. 6.20 shows the values of the electrostatic potential for the 
device. The figure reflects the large variation of the electrostatic potential occuring near 
the drain with respect to the source and bulk. The electron concentration and normalized 
electron temperature are shown in the Fig. 6.21 and 6.22, respectively. The electron 
temperature has a peak value around the high field region near the drain, and drops as the 
drain region is approached. The electron longitudinal velocity is shown in Fig. 6.23. The 
peak velocity is about 1.2xl07 cm/sec, it is very close to the saturation velocity. Fig. 6.24 
shows the drain current verse drain voltage for two different gate voltages. 
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Fig. 6.18 A two-dimensional Silicon MOSFET device 
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Fig. 6.23 Electron longitudinal velocity (VDS=3V, VGS=3V) 
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Fig. 6.24 Drain current vs. Drain voltage characteristics with indicated various gate 
voltage. 
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7. Discussion and Conclusions 

In this work, a semiconductor device simulator based on the Lei-Ting hydrodynamic 
balance equation has been developed. The results are in general accord with other 
methods, such as classical hydrodynamic models and Monte Carlo models. However, our 
method treats scattering within the model itself, and it has the potential of including 
electron-electron interaction and dynamic, nonlocal screening. These quantities are 
calculated within the simulation process, as functions of the electron drift velocity, 
electron temperature, as well as the electron density, without an outside Monte Carlo 
procedure. Thus, besides the usual advantages of traditional hydrodynamic simulation 
approaches, the present method enjoys the added convenience of self-contained treatment 
of scattering. 

We have applied our hydrodynamic balance model to n+-n-n+ ballistic diode, 
MESFET and MOSFET. The numerical results demonstrate the basic hot carrier effect 
involving the spatial and transient velocity overshoot. We also note that the spurious 
overshoot peak, which usually exists in other hydrodynamic models when electric field 
drastically decreases, does not show in our result. 

A generalized Scharfetter-Gummel discretization scheme with the Box Integration 
method has been employed on the numerical algorithm. Also, a new transient simulation 
process has been proposed and applied on the n+-n-n+ diode and MESFET. The new 
algorithm has both the advantages of larger time steps compared to conventional 
decoupled schemes and lesser memory requirement compared to coupled scheme. 
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